Relationship between Ca2+ sparklets and sarcoplasmic reticulum Ca2+ load and release in rat cerebral arterial smooth muscle.

نویسندگان

  • Yukari Takeda
  • Matthew A Nystoriak
  • Madeline Nieves-Cintrón
  • Luis F Santana
  • Manuel F Navedo
چکیده

Ca(+) sparklets are subcellular Ca(2+) signals produced by the opening of sarcolemmal L-type Ca(2+) channels. Ca(2+) sparklet activity varies within the sarcolemma of arterial myocytes. In this study, we examined the relationship between Ca(2+) sparklet activity and sarcoplasmic reticulum (SR) Ca(2+) accumulation and release in cerebral arterial myocytes. Our data indicate that the SR is a vast organelle with multiple regions near the sarcolemma of these cells. Ca(2+) sparklet sites were located at or <0.2 μm from SR-sarcolemmal junctions. We found that while Ca(2+) sparklets increase the rate of SR Ca(2+) refilling in arterial myocytes, their activity did not induce regional variations in SR Ca(2+) content or Ca(2+) spark activity. In arterial myocytes, L-type Ca(2+) channel activity was independent of SR Ca(2+) load. This ruled out a potential feedback mechanism whereby SR Ca(2+) load regulates the activity of these channels. Together, our data suggest a model in which Ca(2+) sparklets contribute Ca(2+) influx into a cytosolic Ca(2+) pool from which sarco(endo)plasmic reticulum Ca(2+)-ATPase pumps Ca(2+) into the SR, indirectly regulating SR function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ontogeny of local sarcoplasmic reticulum Ca2+ signals in cerebral arteries: Ca2+ sparks as elementary physiological events.

Ca2+ release through ryanodine receptors (RyRs) in the sarcoplasmic reticulum is a key element of excitation-contraction coupling in muscle. In arterial smooth muscle, Ca2+ release through RyRs activates Ca2+-sensitive K+ (KCa) channels to oppose vasoconstriction. Local Ca2+ transients ("Ca2+ sparks"), apparently caused by opening of clustered RyRs, have been observed in smooth and striated mus...

متن کامل

Nicotinic acid adenine dinucleotide phosphate mediates Ca2+ signals and contraction in arterial smooth muscle via a two-pool mechanism.

Previous studies of arterial smooth muscle have shown that inositol 1,4,5-trisphosphate (IP3) and cyclic ADP-ribose mobilize Ca2+ from the sarcoplasmic reticulum. In contrast, little is known about Ca2+ mobilization by nicotinic acid adenine dinucleotide phosphate, a pyridine nucleotide derived from beta-NADP+. We show here that intracellular dialysis of nicotinic acid adenine dinucleotide phos...

متن کامل

Calcium activation of vascular smooth muscle. State of the art lecture.

Tension development in arterial smooth muscle is regulated by variations of calcium concentration in the submicromolar range. The receptor for Ca2+ is calmodulin, which through stimulation of myosin light chain kinase can activate sequentially two apparently different contractile states. A third possible contractile state may be related to C-kinase activation. These contractile states are thoug...

متن کامل

Cyclic AMP modulation of adrenoreceptor-mediated arterial smooth muscle contraction

We examined the effects of cyclic AMP (cAMP) on the intracellular Ca2+ release in both the intact and skinned arterial smooth muscle. The amount of Ca2+ in the sarcoplasmic reticulum (SR) was estimated indirectly by caffeine-induced contraction of the skinned preparation and directly by caffeine-stimulated 45Ca efflux from the previously labeled skinned preparation. The norepinephrine-induced r...

متن کامل

Dissecting out the Complex Ca2+-Mediated Phenylephrine-Induced Contractions of Mouse Aortic Segments

L-type Ca2+ channel (VGCC) mediated Ca2+ influx in vascular smooth muscle cells (VSMC) contributes to the functional properties of large arteries in arterial stiffening and central blood pressure regulation. How this influx relates to steady-state contractions elicited by α1-adrenoreceptor stimulation and how it is modulated by small variations in resting membrane potential (Vm) of VSMC is not ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 301 6  شماره 

صفحات  -

تاریخ انتشار 2011